
Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

1

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

2

Contents
Introduction ... 4

Program Design .. 4

Levels of Scaffolded coding tasks ... 5

Year 3 – Medium Term Plan ... 6

Lesson 1 – Review Previous Coding ... 7

Aims ... 7

Success criteria ... 7

Resources ... 7

Activities ... 7

Lesson 2 – A Physical System ... 11

Aims ... 11

Success criteria ... 11

Resources ... 11

Activities ... 11

Lesson 3 – If commands ... 13

Aims ... 13

Success criteria ... 13

Resources ... 13

Activities ... 13

Lesson 4 - Variables .. 15

Aims ... 15

Success criteria ... 15

Resources ... 15

Activities ... 15

Lesson 5 - Repetition .. 18

Aims ... 18

Success criteria ... 18

Resources ... 18

Activities ... 18

Lesson 6 - Debugging .. 22

Aims ... 22

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

3

Success criteria ... 22

Resources ... 22

Activities ... 22

Assessment Guidance .. 25

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

4

Introduction
This unit consists of six lessons that assume children have followed the Coding Scheme of Work in Years 1 and 2.

If most of the class have not, use the Coding Catch-Up unit instead of this unit.

New coding vocabulary is shown in bold within the lesson plans, use these new words in context to help

children understand the meaning of them and start to build up, their vocabulary of coding words.

The Gibbon guided activities provide further practice of the concepts that the children will be learning and can

be used as extension activities. More able children can be encouraged to explore other things that they can

change in their programs and experiment with the options available, such as timers and ‘if’ statements.

Children will often be able to solve their own problems when they get stuck, either by reading through their

code again or by asking their peers; this models the way that coding work is really done. More able pupils can be

encouraged to support their peers, if necessary, helping them to understand but without doing the work for

them.

Program Design

To master coding skills, children need to have the opportunity to explore program design and put computational

thinking into practice. The lesson plans incorporate designing before coding in some lessons.

Storyboarding their ideas for programs. For example, creating a storyboard when planning a program that will

retell part of a story.

• Creating annotated diagrams. For example, creating an annotated diagram to plan a journey

animation that tells the story of an historical event they have been studying.

• Creating a timeline of events in the program. For example, creating a game program against the
computer, what are all the actions needed from the objects?

During the design process, children should be encouraged to clarify:

• the characters (objects and their properties)

• what they will do (actions and events)

• what order things will happen (the algorithm)

• rate their confidence at being able to code the different parts of their design and either refine

the design or review possible solutions as a class or group.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

5

Levels of Scaffolded coding tasks

You can support children’s learning and understanding by using different degrees of scaffolding when teaching

children to code. The lessons provide many of these levels of scaffolding within them and using Free Code

Chimp, Gibbon and Gorilla enables children to clarify their thinking and practice their skills. These are not

progressive levels, children can benefit from all the levels of activities at whatever coding skill level they are:

Scaffolding Task type Examples of how to provide these opportunities

Copying code By giving children examples of code to copy.

Targeted tasks • Read and understand code

• Remix code to achieve a particular outcome.

• Debugging.

• Use printed code snippets so that children can’t run the code but must read it.

• Include unplugged activities and ‘explaining’ tasks e.g. ‘how do variables work?’

Shared coding • Sharing Challenge activities as a class or group on the whiteboard.

• Complete guided activity challenges as a class.

• After completing challenges; share methods to create a class version of the
challenge.

• Free coding as a class

Guided
exploration

• Exploring a limited repertoire of commands

• Remixing code

• Explore commands in free code before being taught what they do.

• Use questioning to support children’s learning.

Project design

and code

Projects (imitate, innovate, invent, remix)

There are different ways to scaffold learning in projects. This process can be
applied to programming projects;

• Using example projects e.g. the Guided 2Code activities.

• Completing the challenges at the end of each guided activity.

• Free code✓

• Create a project that imitates a high-quality exemplar.

• Remixing ideas.

• Independently creating a brand-new program.

Tinkering Use Free code Gorilla to access the full suite of 2Code objects and commands ✓

Use Free code to play and explore freely.

Note: To force links within this document to open in a new tab, right-click on the link then select ‘Open link in

new tab’.

In Literacy, some teachers follow a progression that scaffolds learning to write texts. At

first pupils read lots of examples of the genre of text they are going to create. Then

they create an imitation of an example text. Next, they create a variation of the text

(remix and innovate). Finally, they get to inventing a brand-new version.

Most

scaffolded

Least

scaffolded

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

6

Year 3 – Medium Term Plan

Lesson Aims Success Criteria

1: Review

Previous

Coding

• To review coding vocabulary that relates
to Object, Action, Output, Control and
Event.

• To use 2Chart to represent a sequential
program design.

• To use the design to write the code for
the program

• Children can create a design that represents a
sequential algorithm.

• Children can use a flowchart design to create the
code.

• Children can explain what Object, Action, Output,
Control and Event are in computer programming.

Lesson 2 –

A Physical

System

• To design and write a program that
simulates a physical system.

• Children can explain how their program simulates a
physical system, i.e. my vehicles move at different
speeds and angles.

• Children can describe what they did to make their
vehicle change angle.

• Children can show that their vehicles move at
different speeds

Lesson 3 –

If

commands

• To look at the grid that underlies the
design and relate this to X and Y
properties.

• To introduce selection in their
programming by using the if command.

• To combine a timer in a program with
selection.

• Children can make use of the X and Y properties of
objects in their coding.

• Children can create an if statement in their
program.

• Children can use a timer and if statement to
introduce selection in their program.

Lesson 4 -

Variables

• To understand what a variable is in
programming.

• To use a variable to create a timer

• Children can explain what a variable is in
programming.

• Children can explain why variables need to be
named.

• Children can create a variable in a program.

• Children can set/change the variable values
appropriately to create a timer.

Lesson 5 -

Repetition

• To create a program with an object that
repeats actions indefinitely.

• To use a timer to make characters repeat
actions.

• To explore the use of the repeat
command and how this differs from the
timer.

• Children can show how their character repeats an
action and explain how they caused it to do so.

• Children are beginning to understand how the use
of the timer differs from the repeat command and
can experiment with the different methods of
repeating blocks of code.

• Children can explain how they made objects repeat
actions.

Lesson 6 -

Debugging

• To know what debugging means.

• To understand the need to test and
debug a program repeatedly.

• To debug simple programs.

• To understand the importance of saving
periodically as part of the code
development process.

• Children can explain what debug (debugging)
means.

• Children have a clear idea of how to use a design
document to start debugging a program.

• Children can debug simple programs.

• Children can explain why it is important to save
their work after each functioning iteration of the
program they are making.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

7

Lesson 1 – Review Previous Coding
Aims

• To review coding vocabulary that relates to Object, Action, Output, Control and Event.

• To use 2Chart to represent a sequential program design.

• To use the design to write the code for the program

Success criteria

• Children can create a design that represents a sequential algorithm.

• Children can use a flowchart design to create the code.

• Children can explain what Object, Action, Output, Control and Event are in computer programming.

Resources

Unless otherwise stated, all resources can be found on the main unit 3.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Coding Vocabulary Quiz 2

• Flowchart - example algorithm. You might wish to print a copy of this to refer to while coding.

• 2Code Freecode Gibbon (this is found on the main 2Code page).

• (Optional) Vocabulary flash cards. The Teacher flash cards have been created in such a way that you

can print them on A4 paper, cut them to size, fold them in half and glue them together.

• (Optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

Activities

1. Use the quiz as a class. It is set up so that you attempt all questions and then click the

button to check the answers. Click ‘OK’ to see which are correct and incorrect:

You can use the vocabulary cards to find the answers and display in the classroom.

2. Review the word algorithm – how did the children show their algorithms in Y1 and 2? They might have

used design diagrams, storyboards or lists.

3. Show the children the flowchart example made using 2Chart. Explain that this is another way to show

the algorithm for a program.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
https://www.purplemash.com/site#app/games/2diy/coding_vocab_quiz_y2
https://www.purplemash.com/app/games/2diy/example_flowchart_simple
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

8

4. Read the flowchart together. Can the children see that there are two objects; an animal and a

character. What should the objects do?

• The animal should make a sound when clicked on.

• When the background is clicked, the animal should move right, when the animal collides with

the character, the animal should stop, and the character should say ‘ouch!’.

5. What is the difference between the different coloured boxes?

• The purple ovals show the start of the sequence; often the initial input.

• The green boxes are actions that happen in a sequence.

• The orange diamond is a decision, if the answer is yes, then the yes arrow is followed.

6. Go to the main 2Code Page and show children where to find the Free Code Gibbon Icon by scrolling

down. Children could do this on their own screens at the same time or you could demonstrate.

7. Open Free Code Gibbon on the board. In years 1 and 2, children used Chimp level so the options on

the screen might look a bit different to the children. Review how to add objects in 2Code by going into

 (Design Mode). Drag a car, a character and an animal onto the background.

8. Return to Code View by clicking .

9. Remind children how to save their work and briefly discuss the need to save regularly so they always

have a saved, working version of their program to go back to.

10. Now we are going to try and write code that follows the algorithm.

11. Drag in a When Clicked code block and review how this event works:

12. According to the algorithm, the object that we want to trigger the action is clicking on the animal.

Then we need to code what happens when we click on the object. This is called output. What should

the output be?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

9

13. We are going to make the object make a sound when clicked so drag a Sound block into the grey box

under When Clicked so that it is indented slightly.

Remind children that this indentation makes the

output happen due to the input (clicking the animal).

14. Click on the question mark and select a sound.

15. Save and then test the program so far. Does the animal make a sound when you click on it?

16. What else does the algorithm say should happen and how can we make this happen?

17. The animal should move right so drag the animal object into the code window below the existing code.

18. A menu will pop up; ask the children what it is called (the action menu).

19. Select the action ‘right’. The save and test the code again.

20. What do we need to code next? There should be some code when the animal collides with the

character.

21. Drag in a collision detection block:

22. Ask the children which options to select so that the line or code will do something when the animal

collides with the character.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

10

23. What should happen next according to the algorithm? When this happens, the character should say

something, and the animal should stop. Ask the children to explain how to write the code for this.

24. Save, test and debug (if necessary) the program.

25. What should the car do? Nothing as no action is detailed in the algorithm.

26. Children should now be given some time to explore free code Gibbon, reminding themselves of things

that they did in years 1 and 2 and trying out new commands that they notice.

27. One thing that they could explore is the different possible actions of the different object types. They

could compare the possible actions of the vehicle and the character, for example.

28. If the children have workbooks, they can print their code and write about why they chose the

commands they did and why they put them in that specific order.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

11

Lesson 2 – A Physical System
Aims

• To design and write a program that simulates a physical system.

Success criteria

• Children can explain how their program simulates a physical system, i.e. my vehicles move at different

speeds and angles.

• Children can describe what they did to make their vehicle change angle.

• Children can show that their vehicles move at different speeds

Resources

Unless otherwise stated, all resources can be found on the main unit 3.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Properties video

• 2Code Freecode Gibbon (this is found on the main 2Code page).

• (Optional) print storyboard templates for program design.

• (Optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

• (Optional) Self-Assessment templates:

o Pdf for printing

o Writing template

Activities

1. Today we will be creating a new program to do something specific that simulates a physical system.

Ask the children if they know what this means. Take some suggestions.

2. It means creating a program where the objects behave as they would in the real world. We will be

using vehicle objects and they should move at different speeds and should change angles.

3. Demonstrate opening free code Gibbon and go into Design Mode and drag in a vehicle object.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
http://www.purplemash.com/app/videos/2c_properties_menu_screencast
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons
https://www.purplemash.com/app/englishframework/2Code_Self_Assessment
https://www.purplemash.com/app/pup/2Code_Self_Assessment_pup

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

12

4. Double-click on the vehicle and show children that they can change it into something else if they like.

They can even draw their own image or upload one from their computer, but it will retain the

properties of a vehicle. This is important for them to be able to change the speed and angle. The

Properties of Objects video explains this.

5. Exit Design Mode and drag the vehicle into the black code box. Show the pop-up menu and ask

children where the angle and speed options are.

6. For the program that they are going to make, children should include at least three vehicles that travel

at different speeds, and at least one vehicle should change angle. The Chimp activity, ‘Vehicles’, shows

cars moving at different speeds.

7. Children should work in pairs to discuss what program they want to design and should create a design

document before coding. Children can use their 2Code workbooks to write down notes that will help

them plan their programs or they could create a labelled diagram or storyboard. They should decide:

• Which physical system they are simulating?

• How many vehicles they will include in their program.

• The steps of their algorithm - What their program should do?

8. Once children have their programs planned out, they can try to create it in Free Code Gibbon.

9. For extension, children can look at the Gibbon activity ‘Vehicles 2’, which adds other elements to the

movement of the vehicles.

10. It is also useful for children to spend some time evaluating how successful they were in creating their

programs in Free Code Gibbon. Did planning help? Did their tinkering in the previous lesson using Free

Code give them ideas? Children can use their workbooks or the self-evaluation files to record this.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
http://www.purplemash.com/app/videos/2c_properties_menu_screencast

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

13

Lesson 3 – If commands
Aims

• To look at the grid that underlies the design and relate this to X and Y properties.

• To introduce selection in their programming by using the if command.

• To combine a timer in a program with selection.

Success criteria

• Children can make use of the X and Y properties of objects in their coding.

• Children can create an if statement in their program.

• Children can use a timer and if statement to introduce selection in their program.

Resources

Unless otherwise stated, all resources can be found on the main unit 3.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• (Optional) Vocabulary flash cards.

• Knights Castle flowchart – set this as a 2do for the class.

• Guided coding activity Guard the Castle (Gibbon) (this is found on the main 2Code page).

• Have printed storyboard templates available for program design.

Activities

1. Introduce the new vocabulary that they will be learning about today: ‘if’ statements.

2. Open free code Gibbon. Go into Design View and click the button in the bottom left. This makes a

grid visible. Drag in a vehicle and look at the property window for it. You will see it has an X and Y

position with a little icon showing which is which. Drag the vehicle to a different position and you will

see that the properties change.

Selection

This is a conditional/decision command. When selection is used, a program will choose a different

outcome depending on a condition, for example; “repeat”; “repeat until”; “if/else”.

If

A conditional command. This tests a statement. If the condition is true, then the commands inside

the block will be run.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
https://www.purplemash.com/#app/games/2diy/flowchart_knights_castle
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

14

3. Work out where 0,0 is and the maximum X and Y by dragging the vehicle around. Give children X and Y

positions and see whether they can make a good estimate as to where the vehicle should go. You could

relate this to the context of coordinates and graphs.

4. Click on the button and change the grid size to a different size. See how this affects the X and Y

positions. If you change the grid size after you have set up the screen design, it can mess things up so do

this before you start coding.

5. Briefly review how to make a character respond to a user’s input on the keyboard.

6. Open the guided lesson ‘Guard the Castle’ in the Gibbon activities and do Step 1 together.

7. In Step 2, you must create a timer which checks the X position of the knight every second; if the knight’s

position is greater than 15, he should change direction. Can children explain how measuring the X

position can decide whether the knight should change direction? Complete this step together explaining

how to correctly insert the required code blocks and select options.

8. Do Step 3 together, adding another ‘if’ statement. Talk about how this should be indented at the same

level as the first ‘if’ statement, so it is also inside the timer.

9. Open the flowchart example for this activity in a different tab on and read it together to ensure that

they understand it.

10. Do the debugging step of the activity and then watch the video for the challenge activity.

11. Children should now plan their challenge, either by adding to the flowchart or using a printed

storyboard.

• They should use at least one ‘if’ statement and timer in their program.

• They should try to use the X and Y positions as part of their code.

Once planned, they should create, save, test and debug their code.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

15

Lesson 4 - Variables
Aims

• To understand what a variable is in programming.

• To use a variable to create a timer.

Success criteria

• Children can explain what a variable is in programming.

• Children can explain why variables need to be named.

• Children can create a variable in a program.

• Children can set/change the variable values appropriately to create a timer.

Resources

Unless otherwise stated, all resources can be found on the main unit 3.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• 2Code Freecode Gibbon (this is found on the main 2Code page).

• 4 Mini/Individual whiteboards and whiteboard pens.

• (Optional) Vocabulary flash cards.

Activities

1. Today we will be working with variables. Here is the definition. You could display the flash card to

remind children.

2. The following will help to explain the idea to the children. Choose two children to stand at the front of

the class (they must have different names), give each child a board and a pen. Explain as follows:

3. Each child is a variable. They both have names, the first variable is called <insert child’s name here –

(for this example we’ll use ‘A’)>, the other variable is called <insert other child’s name here (for this

example we’ll use ‘B’)>.

4. I am going to store the value ‘2’ in variable A(substitute child’s name).

5. I am going to store the value ‘5’ in variable B.

6. Ask both children to write their value on the whiteboard.

7. Now I am going to increase the value of variable A by 3 – Ask child A to rub out their value and write

the new one.

8. Now I am going to multiply the value of variable B by 3 - Ask child B to rub out their value and write

the new one.

Variables are like boxes in which the computer can store information. To find the information in the

box, each box should be labelled. Therefore, each variable (each of our boxes) needs to have a

name. The name should be something that helps you remember what it is. The information inside

the box is called the Variable Value. The user, the program or another variable can change this

Variable Value.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

16

9. Ask a new child to come and be another variable, introduce them to the class ‘this is variable <insert

name (we’ll use C)>’.

10. I am going to set the value of variable C to the value of B times the value of A. Ask C to write their

value.

11. Now I am going to set the value of A to 5. Get A and C to write their new values.

12. Now I am going to set the value of B to 2. Get B and C to write their new values.

13. Now I am adding a timer so that the value of A is going to increase by 1 every 5 seconds when I say go.

See whether the variables can keep up with changing their values as you count off the seconds.

Explain that the advantage for a computer is that it can do these calculations almost instantly.

14. Ask another child to come up to be a fourth variable called <insert child’s name (D)>.

15. Set the value of D to ‘The’. D should write their value. Explain that the previous variables were number

variables but this one is a text variable.

16. Now set the value of D to ‘the current value ‘+ <space>+a random noun – get someone from the class

to give you any noun. D should rewrite their value e.g. ‘The cat’ (talk about the need for the <space>

otherwise it would be Thecat.

17. Now set D to ‘the current value ‘+ ‘<space> sat on the ’. D should rewrite their value e.g. ‘The cat sat

on the’

18. Now set the value of D to ‘the current value ‘+ <space>+a random noun+’.’ – get someone from the

class to give you any noun. D should rewrite their value e.g. ‘The cat sat on the fridge.’

19. Now say you are going to set the value of variable D to the current value multiplied by C. What should

D write now? They should write ERROR as you can’t multiply a text variable by a number variable. (The

+ used with the text variable is really ‘and’).

20. So, variables need a name – usually they will have a name that explains what they are for to help you

understand and debug your code, and a value that can change as the program runs. Variable can use

the values of other variables.

21. Explain that you are closing the program now, so the variables should wipe off their values and return

to their seats. Ask what the variable values will be the next time the program is opened; will they keep

their current values? No, the values will reset to whatever the program initially sets them to.

22. Now open Free Code Gibbon on the whiteboard and look at the orange variable buttons in the menu

on the left-hand side.

23. Drag Create Variable into the black code box. The drop-down menu only gives two options. Why is this?

Remind children that, in 2Code, only options for variables are numbers or text.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

17

24. Choose Number. Give the variable a name – ‘myNumber1’is fine for now. Ask children why we are

naming the variable? What should the variable equal? We can either define the variable as a specific

number or set it to Random. For this example, we will set the variable to 0.

25. Drag in a timer and change ‘After’ to ‘Every’.

26. Drag in and place it in the yellow box under Timer. We are using the timer as this is an

easy way for us to get the variable to continue changing all the time. Select your variable from the drop-

down menu. Set it to Add 1 every second.

27. Drag in the Print to Screen output command and put it below the variable change, in the yellow box.

Select the variable for the Print to Screen. The Print to screen command will display the value of the

variable on the screen.

28. Save the code and then run the code. Show children that the value of the variable is increasing by 1

every second and printing to the screen.

29. Have a look at the bottom left-hand corner of the screen as the timer counts. This is the Variable Watch

window. It tells us what variables we have in our program and what they are doing. Variable Watches

are common in programming environments to help programmers understand what the computer is

doing and to debug their code if necessary.

30. Children should now try to create their own timers in 2Code Gibbon. Remind them to test and save

them.

31. Once they have done this, they can try the following Guided lessons that can be accessed on the main

2Code page. Children should watch the videos before each step to help them and use the hints if

necessary. To access a hint or view the video again, click on the .button top-right and then on the

.

• Switching Background - the on/off state of a switch.

• Genie - counting the number of swipes before changing a lamp into a genie. This lesson has a

challenge at the end that helps children to explore the variable effects.

• Night and Day Gibbon - the numbers changing in a timer. This lesson has a challenge at the end that

helps children to explore the variable effects.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
http://www.purplemash.com/app/code/gibbon/powerswitch
http://www.purplemash.com/app/code/gibbon/genie
http://www.purplemash.com/app/code/timers/nightandday2

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

18

Lesson 5 - Repetition
Aims

• To create a program with an object that repeats actions indefinitely.

• To use a timer to make characters repeat actions.

• To explore the use of the repeat command and how this differs from the timer.

Success criteria

• Children can show how their character repeats an action and explain how they caused it to do so.

• Children are beginning to understand how the use of the timer differs from the repeat command and
can experiment with the different methods of repeating blocks of code.

• Children can explain how they made objects repeat actions.

Resources

Unless otherwise stated, all resources can be found on the main unit 3.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Vocabulary flash cards. The Teacher flash cards have been created in such a way that you can print

them on A4 paper, cut them to size, fold them in half and glue them together.

• Example programs and flowcharts. There is a flowchart made using 2Chart and a coded example for

each one.

o Repeat with timer

o Repeat forever with timer

o Repeat dance with timer

o Repeat command with Character

o Repeat command with turtle

• What does it do? Writing project. Set this as a 2do for the class. You might wish to print the file for some

students.

• 2Code Freecode Gibbon (this is found on the main 2Code page).

Activities

1. In this lesson, we will be learning some new vocabulary relating to programming. On the board, go

through the terms: Sequence, Repeat, Input and Output. You could display these in the classroom and

recap them later.

Sequence This is when a computer program runs commands in order.

Repeat
When a computer program repeats a sequence of commands.

In 2Code this could be done using "REPEAT", "REPEAT UNTIL" or using a "Timer"

In 2Code a "repeat" command can be used to make a block of commands run a set

number of times or to repeat a block of commands forever.

Input Information going into the computer.

An input could be user the moving or clicking the mouse, or the user entering

characters on the keyboard. On tablets, there are other forms of input such as

finger swipes, touch gestures and tilting the device.

Output Output is information that comes out of the computer.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_with_timer
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_forever_with_timer
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_dance_forever_with_timer
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_command_with_character
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_command_with_turtle
https://www.purplemash.com/#app/pup/code_snippets
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

19

This could be items that appear on the screen or sound that comes out of the

speakers. Examples of output are "Print to screen" and "Sound".

2. Explain that children will be exploring ways to make objects repeat actions today.

3. Firstly, we are looking at making objects repeat actions using a timer. Open the example program

Repeat with timer on the whiteboard. The character repeats the action of going up and down twice.

Have a look at how this is done in the code and execute (run) the code to test it.

4. How could we make the character go up and down forever? Look at the flowchart showing the

algorithm for this code. It would be impossible to keep adding the lines …..

…….inside each other forever.

5. To make the timer repeat forever, you first need to work out how often to repeat the block of code; in

the example case, every 1 seconds should be the right amount because he goes up for 0.5 seconds then

down for 0.5 seconds then we want him to repeat this again. Look at the flowchart for this example first.

6. Open the example code Repeat forever with timer. Look at the first line of code

7. Note that the timer says ‘every’ rather than ‘after’:

8. Inside this timer is the code to repeat:

9. Another example of a character repeating actions forever is in the example file Repeat dance with timer.

Look at this with the children, can they ‘read’ the code to see how the actions are repeated?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/examples/2c_y3_character_repeat_timer
https://www.purplemash.com/app/code/examples/2c_y3_character_repeat_forever_timer
https://www.purplemash.com/app/code/examples/2c_y3_character_dance_forever

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

20

10. Give children time to experiment with making a small program using the timer to repeat actions. They

should briefly plan their program by drawing a labelled diagram or a flowchart before coding it.

11. Once they are ready, bring the class back together to discuss the following:

12. Another command that is used to repeat blocks of code is the command. It might seem that

you could just use this instead of the timer. However, the repeat command is designed to perform an

action (run a block of code) many times as quickly as possible. This is one of the big advantages of using

a computer to do tasks; it can be programmed to perform complex calculations much faster than a

human can. Therefore, the repeat command might not always be the best choice.

13. Look at the flowchart and example code Repeat command with character It looks like it should work

fine.

14. But, when you run it, the code will be performed so fast that you can’t actually see the actions! You can

try running the code in slow mode and you’ll see that the actions do happen.

15. Use the slider bar at the bottom right to alter this before you press ‘OK’ on the message at the start:

So, in this case, the Repeat command isn’t really the best one to use.

16. Lastly, show the children the example of using the repeat command with a turtle object. It does work,

just too fast to use in a visual program. An example of this is in Repeat command with turtle.

17. . The ‘What does it do?’ sheet asks children to predict what code will do when run, run the code to

check their predictions and then use the code to make a better program. All code snippets use repeat;

they are reproduced below. Give children time to complete the sheet (or sections for at least one code

snippet). They should then try to adapt the code to make a new program using the same coding blocks

and ideas. For example, could they write a program that asks the user for a number and then lists the

first 50 numbers in that times table?

Sentence generator using repeat command.

This instantly generates sentences by combining random adjectives, animals and verbs.

Welcome you

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/examples/2c_y3_character_repeat
https://www.purplemash.com/app/code/examples/2c_y3_turle_dance_forever

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

21

Number sequence maker using user input

Logo Machine (Requires a Turtle object)

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

22

Lesson 6 - Debugging
Aims

• To know what debugging means.

• To understand the need to test and debug a program repeatedly.

• To debug simple programs.

• To understand the importance of saving periodically as part of the code development process.

Success criteria

• Children can explain what debug (debugging) means.

• Children have a clear idea of how to use a design document to start debugging a program.

• Children can debug simple programs.

• Children can explain why it is important to save their work after each functioning iteration of the
program they are making.

Resources

Unless otherwise stated, all resources can be found on the main unit 3.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Debugging Process for display on the board.

• Debug Challenges Gibbon (found near the bottom of the main 2Code page in the Debug Challenge

section).

• 2Connect Tool; this is in the Tools section of Purple Mash.

Activities

1. Review the terms below. Children will have done this in year 2.

Bug

A problem in a computer program that stops it working the way it was designed.

Debug/Debugging

Looking for any problems in the code, fixing and testing them.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/site#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1
https://www.purplemash.com/site#app/flashcards/2c_debugging_process
https://www.purplemash.com/app/code/debugchallenges/2codedebuggibbon
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons
https://www.purplemash.com/#tab/pm-home/tools

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

23

2. Remind children of the debugging steps using the guide:

3. Children should open Debug Challenges Gibbon (found near the bottom of the main 2Code screen in the

Debug Challenge section). Children should work through challenges for about 10 minutes.

4. Ask children what they think the stages of creating a computer program are. Record their ideas on a

white board or using 2Connect. The aim is to end up with something resembling this example:

5. Ask them where ‘Saving’ comes into the process. Should they just save at the end? Why not? Try adding

‘Save’ in and then adding arrows to show the order of the process.

6. Children will hopefully conclude that you must save regularly so you don’t lose any work. It also means

that if you mess up your code you can go back to the last version that you saved (by using the open file

button). Compare this to other work that they do on the computers, is the process different? Should you

always remember to save every so often, whether you are painting a picture, writing a story or making

some code?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/debugchallenges/2codedebuggibbon

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

24

7. Children will now be using one of their own saved programs that they created in a previous Free Code

lesson using Free Code Gibbon. They should decide which one of their programs they want to use, they

will be breaking it for another child to debug. They should first write down or draw a design/algorithm

diagram to show exactly what the program is supposed to do. Here is an example using a diagram:

8. Children should then save their work with a different name. Ask them why they think they should do

this? Because they are going to be changing the program and they won’t want to lose the original

version. Giving it a different name means that there are now two versions. Discuss how to name the two

versions so they don’t get muddled up.

9. They should break a maximum of five pieces of code. Each time they break a bit, they should write down

what they broke to stop their program from working.

10. Once they have finished breaking their program, children should save their program using their name

and the name of the program in a class folder –

11. They should then share the original design with their partner.

12. Each child should open their partner’s program from the class folder and each should try to fix it using

the debugging steps (display these on the board). Once the child has finished, they should check that the

program works according to the explanation that the creator has specified. If it does not work according

to the explanation, they must go back and fix the code until it does.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

25

Assessment Guidance
The unit overview for year 3 contains details of national curricula mapped to the Purple Mash Units. The

following information is an exemplar of what a child at an expected level would be able to demonstrate when

completing this unit with additional exemplars to demonstrate how this would vary for a child with emerging or

exceeding achievements.

Assessment Guidance

Emerging With ongoing support, children can turn a real-life situation into an algorithm for a program
that has cause and effect (Unit 3.1, lesson 2, step 7) and use their algorithm to write simple
two step programs using 2Code (Unit 3.1 Lesson 2, step 8). Furthermore, they can identify an
error within a program and fix it (Unit 3.1 Lesson 6).

Pupils can design and code a program that follows a simple sequence (lesson 1 and lesson 2).
Children experiment with the use of timers to achieve repetition effects in their programs
(lesson 5) – they might need adult support to identify the source of unintended effects when
using timers. Children can use simple ‘if statements’ to introduce selection to their coding
(lesson 3

Children’s designs for their programs, show that they are thinking of the structure of a simple
program in logical, achievable steps (lessons 1 and 2). Children can make good attempts to
‘read’ code and predict what will happen in a program which can help them to correct errors
(lesson 6).

Expected Children can turn a simple real-life situation into an algorithm for a program by
deconstructing it into manageable parts (Unit 3.1, lesson 2, step 7-8).

Children’s designs for their programs, show that they are thinking of the structure of a simple
program in logical, achievable steps with attention to specific events that initiate specific
actions (lessons 1 & 2).

Most children can explain the choice of commands they have included in their program and
what they achieve (Unit 3.1. Lesson 1 Point 28).

Most children can integrate multimedia components such as sounds, animation and images
into their coding. They can apply specific actions to these objects to animate them as part of
the overall process of creating their own program (Unit 3.1. Lesson 1).

Pupils have a clear idea of how to design and code a program that follows a simple sequence
(lessons 1 and 2). Children experiment with the use of timers to achieve repetition effects in
their programs – they can determine whether a timer should be called every x seconds or
after x seconds and the difference between the two (lesson 5). They are beginning to
understand the difference in effect of using a timer command rather than a repeat command
when creating repetition effects in their coding (lesson 5). Children can use ‘if’ statements to
bring selection into their own coding (unit 3.1, lesson 3). They understand how variables can
be used to store information while a program is executing (unit 3.1, lesson 4) and make
attempts to use and manipulate the value of variables.

Children can ‘read’ others’ code and predict what will happen in a program which helps them
to correct errors (lesson 6). They can also make good attempts to fix their own bugs as their
coding becomes more complex (lessons 3,4 & 5).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work Unit 3.1 – Coding – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

26

Assessment Guidance

They can be reflective on how successful they were at creating their programs and how the
previous learning has helped them with the planning aspect of their program (Unit 3.1. Lesson
2 Point 10).

Exceeding Children are attempting to turn increasingly complex real-life situations into algorithms for a
program by deconstructing the situation into manageable parts. Children’s design shows that
they are thinking of the required task and how to accomplish this in code (Unit 3.1, lesson 2).
Children can identify an error within a program that prevents it following the desired
algorithm and then fix it (Unit 2.1 Lesson 6). Children make intuitive attempts to debug their
own programs as they increase in complexity.

Pupils realise the constraints of creating purely sequential programs and intuitively grasp the
concepts of selection (lesson 3) and repetition (lesson 5). Children have a good understanding
of when to use a timer in a program rather than a ‘repeat’ command to for repetition (lesson
5) and this is evidenced in their program designs. Children make use of variables in their
programs and combine these with timers to creative effect (lesson 4).

Children’s designs for their programs, show that they are absorbing new knowledge of coding
structures such as ‘if’ statements, repetition and variables to think of their programs in
logical, achievable steps. Children can ‘read’ others’ code and predict what will happen in a
program which helps them to correct errors (lesson 6). They exhibit greater ease at fixing
their own bugs as their coding becomes more complex. (lessons 3,4 & 5).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

