
Purple Mash Computing Scheme of Work Unit 5.1 – Coding –Appendix 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

1

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work - Coding Crash Course–Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

2

Contents
Introduction .. 4

Differentiation .. 4

Challenges .. 4

Free coding ... 4

Program Design .. 4

Levels of Scaffolded coding tasks ... 5

Year 5 Crash Course – Medium Term Plan ... 7

Lesson 1 – Introduction to coding with 2Code ... 8

Aims .. 8

Success criteria ... 8

Resources ... 8

Activities ... 8

Lesson 2 Repetition Commands .. 12

Aims .. 12

Success criteria ... 12

Resources ... 12

Activities ... 12

Lesson 3 – ‘If’ Statements for selection .. 16

Aims .. 16

Success criteria ... 16

Resources ... 16

Activities ... 16

Lesson 4 - Introducing Variables ... 20

Aims .. 20

Success criteria ... 20

Resources ... 20

Activities ... 20

Lesson 5 and 6 Designing a game that simulates a Physical System .. 25

Aim ... 25

Success criteria ... 25

Resources ... 25

Appendix I: Other features of 2Code .. 29

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work - Coding Crash Course–Contents

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

3

Real Code Mode: .. 29

Sharing: ... 29

Appendix 2: Actions for Gorilla objects .. 30

Appendix 3: Commands for Gibbon objects ... 33

Appendix 4 – Creating variables ... 36

Assessment Guidance ... 37

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work - Coding Crash Course–Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

4

Introduction
The crash course is intended to replace unit 5.1 – Coding for classes who have not completed the previous

Purple Mash Coding units from the scheme of work.

Differentiation

The Gorilla activities provide further practice of the concepts that the children will be learning and can be

used as extension activities. More able children can be encouraged to explore other things that they can

change in their programs and experiment with the options available, such as variables and If/else

statements.

When children get stuck, they will often be able to solve their own problems either by reading through their

code again or by asking their peers; this models the way that coding work is really done. More able pupils can

be encouraged to support their peers, if necessary, helping them to understand but without doing the work

for them.

The crash-course aims to prepare children for using the Computing Scheme of Work Coding unit in year 6. To

enhance children’s ability to code and understand the process of coding and design, children should have

had as many of the following experiences as possible:

Challenges

When using the guided activities, children should have attempted the challenges at the end of the guided

lessons in 2Code and come up with solutions to these either individually or using shared coding as a group or

class.

Free coding

Children will benefit from spending some time using:

• Y1-2 Free code Chimp (or Free code scenes)

• Y3-4 Free code Gibbon

• Y5-6 Free code Gorilla

To create their own programs.

Program Design

To master coding skills, children need to have the opportunity to explore program design and put

computational thinking into practice. The crash course suggests some designing before coding in the plans.

Children could do this through:

• Storyboarding their ideas for programs. For example, creating a storyboard when planning a program

that will retell part of a story.

• Creating annotated diagrams. For example, creating an annotated diagram to plan a journey

animation that tells the story of an historical event they have been studying.

• Creating a timeline of events in the program. For example, creating a game program against the

computer, what are all the actions needed from the objects?

During the design process, children should be encouraged to clarify:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work - Coding Crash Course–Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

5

• the characters (objects and their properties)

• what they will do (actions and events)

• what order things will happen (the algorithm)

• rate their confidence at being able to code the different parts of their design and either refine the

design or review possible solutions as a class or group.

Levels of Scaffolded coding tasks

You can support children’s learning and understanding by using different degrees of scaffolding when

teaching children to code. The lessons provide many of these levels of scaffolding within them and using Free

Code Chimp, Gibbon and Gorilla enables children to clarify their thinking and practice their skills. These are

not progressive levels, children can benefit from all the levels of activities at whatever coding skill level they

are:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work - Coding Crash Course–Introduction

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

6

Scaffolding Task type Covered by guided activities in

2Code

How to provide additional

opportunities

 Copying code ✓

Targeted tasks Read and understand code ✓

Remix code to achieve a

particular outcome ✓

Debugging ✓

• Use printed code snippets so that

children can’t run the code but must

read it.

• Include unplugged activities and

‘explaining’ tasks e.g. ‘how do

variables work?’

Shared coding Sharing Challenge activities → • Complete guided activity challenges

as a class.

• After completing challenges; share

methods to create a class version of

the challenge.

• Free coding as a class

Guided

exploration

Exploring a limited repertoire of

commands ✓

Remixing code ✓

• Explore commands In free code

before being taught what they do.

Use questioning to support

children’s learning.

Project design

and code

Guided activities ✓

Guided challenges at the end of

each guided activity ✓

Free code✓

Projects (imitate, innovate, invent,

remix)

There are different ways to scaffold

learning in projects. This process can

be applied to programming projects;

• Using example projects.

• Create a project that imitates a high-

quality exemplar.

• Remixing ideas.

• Independently creating a brand-new

program.

Tinkering Use Free code Gorilla to access

the full suite of 2Code objects

and commands ✓

Use Free code to play and explore

freely.

In Literacy, some teachers

follow a progression that

scaffolds learning to write

texts. At first pupils read

lots of examples of the

genre of text they are going

to create. Then they create

an imitation of an example

text. Next, they create a

variation of the text (remix

and innovate). Finally, they

get to inventing a brand-

new version.

Most

scaffolded

Least

scaffolded

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

7

Year 5 Crash Course – Medium Term Plan

Lesson Aims Success Criteria

1 To explain what coding is.

Introduction to the 2Code
interface including the possible
actions of character objects.

• Children can explain that coding is how computer
programs are created.

• Children can navigate around the 2Code interface,
dragging and dropping code blocks and running code.

2 To create a program with an
object that repeats actions
indefinitely.

To use a timer to make characters
repeat actions.

To explore the use of the repeat

command and how this differs

from the timer.

• Children can show how their character repeats an
action and explain how they caused it to do so.

• Children are beginning to understand how the use of
the timer differs from the repeat command and can
experiment with the different methods of repeating
blocks of code.

• Children can explain how they made objects repeat
actions.

3 To create a program that responds

to the ‘if’ command or the ‘if/else’

command

To use selection within a program.

• Children can create an ‘if’ statement in their program.

• Children can create an ‘if/else’ statement in their

program.

• Children can use a timer and ‘if’ statement to respond

to the actions of a character and change their actions.

4 To understand what a variable is in

programming.

To use a variable to create a visual

timer.

To explore number and string

variables.

• Children can explain what a variable is in programming.

• Children can explain why variables need to be named.

• Children can create a variable in a program.

• Children can set/change the variable values
appropriately

5 & 6 To go through the design, code,

execute, refine process.

To use the coding skills that they

have encountered creatively in

their own program.

To create a program that controls

or simulates a physical system, i.e.

changing the speed and angle of

moving objects.

• Children have an idea about the design process and its

benefits.

• Children have turned a design into a functioning

program.

• Children can explain how their program simulates a

physical system, i.e. objects move at different speeds

and angles, what they did to make their vehicle change

angle, show that their vehicles move at different

speeds.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

8

Lesson 1 – Introduction to coding with 2Code
Aims

• To explain what coding is.

• Introduction to the 2Code interface including the possible actions of character objects.

Success criteria

• Children can explain that coding is how computer programs are created.

• Children can navigate around the 2Code interface, dragging and dropping code blocks and running

code.

Resources

Unless otherwise stated, all resources can be found on the main unit 5.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Bubble program design – to be displayed on the whiteboard or printed for display.

• (Optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

• Note: Coding vocabulary is highlighted in bold in this lesson plan, this vocabulary should be used so

that children pick up the appropriate coding vocabulary in context.

Activities

1. Explain to the children that we are going to be coding. Ask them if they know what coding is? Discuss

briefly that it is the way that computer programmers input instructions into computers to create

programs. Can they give any examples of computer programs that they have used?

2. Start off by doing some activities where the children must follow or give clear instructions.

3. Choose two children; one is a robot and the other is a coder. The coder needs to direct the robot to walk

from one place in the classroom to another. How can they give the instructions so that the robot does

not crash into objects in the way? Repeat a few times in different locations.

4. Tell the children that you are now going to be the robot and they are the coders. Stand by the

whiteboard and ask the children to give you clear instructions, one step at a time, for drawing a smiley

face.

5. Once you have a set of clear instructions, introduce the term algorithm.

6. The children have created an algorithm to draw a smiley face.

7. Discuss the way that coding languages use symbols rather than whole sentences; they turn the

algorithms into code. Can they come up with their own symbols for the instructions for drawing a smiley

face?

A precise step by step set of instructions used to solve a problem or achieve an objective.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y5/computing_sow_y5_5-1
https://www.purplemash.com/site#app/flashcards/2c_bubble_design

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

9

For example, holding their fingers in a circle shape for the face and combining this with a symbol for

‘small’ for the eyes. These symbols could be written on the whiteboard to create a program.

This can become more complex, depending upon the understanding and interest level of the

children. Some children will enjoy working out how their ‘code’ could be adapted to draw a sad or

sleeping face. Some children will want to be precise about the placement of the shapes, e.g. a

symbol to show putting the smile below the eyes.

8. Show the children the design diagram and explain that, together, you are going to make a program using

2Code that follows this design. Talk through the diagram so that children understand what the program

will do.

9. Put Free Code Gorilla on the board and point out the code blocks on the left-hand side. The first thing to

do is to set up the look of the program in deign view. Click on the button. The program is

created by adding objects and then writing code for what these objects do. The different object types in

2Code Gorilla are on the left-hand panel:

Background

10. To add an object, you drag it onto the screen. Drag a character into Design View.

11. Explain that the background object is always added. You could click on to see its properties:

12. Change the background by double-clicking on the question mark, this opens the Clipart picker where you

can select an existing background, upload an image from your device or paint an image. Choose the

underwater background from the existing backgrounds.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/openended/freecodegorilla

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

10

13. Click on the character object that you added and change the name property to ‘greenBubble’:

14. Next, double-click on the image property to open the clipart picker. You will find the green bubble image

in the bubble section of the clipart picker (use the drop-down box at the top). The bubble will probably

be too big, so look for the scale property and click on it to reduce the scale of the bubble. Add the other

required objects and name them appropriately referring to the design diagram. Note: the fish should be

an animal object type and the image can be found in the sea section of the clipart picker.

15. Show children how to save their work into their work folders and remind them of the need to save

regularly with sensible names to avoid losing their work.

16. Return to Code View and point out that the added objects now appear on the left of the

screen below the existing code blocks.

17. Drag a block into the coding area of the screen; this is the grey bar at the top of the main

area.

18. Choose an action for it e.g. .

19. Now click on the button to run the code and you should see the green bubble moving up. Ask the

children why the other objects are not performing any action? (a program will only do what you code it

to do – you haven’t written any code for the other objects yet). Click to return to the coding view

20. Drag a block below the line of code that you just wrote. This is called an event block;

when an object is clicked it triggers an event (the click event) which will have an action

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

11

21. Look at how this event works:

22. You select the object that will be clicked – refer to the design to see that when the blue bubble is clicked

it should go up. Select

23. You then drag in the object that will perform an action when the first object is clicked into the indented

part of the code window – emphasise the importance of this to the children - select

again.

24. You then select an action for that object – select

25. What do children think will happen when the code is run now? Save the code and see if they predicted

correctly; the green bubble will move up, when the blue bubble is clicked, the blue bubble will move up.

26. See whether children can return to their own devices and create the rest of the design themselves.

27. Once they have done this, they should have some time to have a tinker with 2Code and see what they

can discover. This tinkering could be completely free, or you could give some directives as suggested

below:

• Add different types of objects and see how they have different actions e.g. compare character,

vehicle and turtle objects – see Appendix 2 for details of what these are.

• Work out what each of the Commands does (the code blocks at the top above the objects) – see

Appendix 3 for details.

• Try adding sound when objects are clicked

• Try to work out how a timer or a repeat block works

28. If the children have workbooks, they can print their code and write about what they have discovered and

what they would like to try doing next.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

12

Lesson 2 Repetition Commands
Aims

• To create a program with an object that repeats actions indefinitely.

• To use a timer to make characters repeat actions.

• To explore the use of the repeat command and how this differs from the timer.

Success criteria

• Children can show how their character repeats an action and explain how they caused it to do so.

• Children are beginning to understand how the use of the timer differs from the repeat command and can

experiment with the different methods of repeating blocks of code.

• Children can explain how they made objects repeat actions.

Resources

Unless otherwise stated, all resources can be found on the main unit 5.1 page. From here, click on the icon to set

a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and ‘open

in new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Example programs and flowcharts. There is a flowchart made using 2Chart and a coded example for

each one.

o Repeat with timer

o Repeat forever with timer

o Repeat dance with timer

o Repeat command with Character

o Repeat command with turtle

• Worksheet ‘What does it do?’. You could set this as a 2Do or print in colour.

• 2Code Freecode Gorilla tool.

Activities

1. In this lesson, we will be learning some new vocabulary relating to programming. On the board, go

through the terms: Sequence, Repeat, Input and Output.

Sequence - When a computer program repeats a sequence of commands. In 2Code this could be done

using "REPEAT", "REPEAT UNTIL" or using a "Timer"

Repeat – In 2Code a "repeat" command can be used to make a block of commands run a set number of

times or to repeat a block of commands forever.

Input – Information going into the computer. An input could be user the moving or clicking the mouse, or

the user entering characters on the keyboard. On tablets, there are other forms of input such as finger

swipes, touch gestures and tilting the device.

Output - Output is information that comes out of the computer. This could be items that appear on the

screen or sound that comes out of the speakers. Examples of output are "Print to screen" and "Sound".

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y5/computing_sow_y5_5-1
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_with_timer
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_forever_with_timer
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_dance_forever_with_timer
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_command_with_character
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y3/computing_sow_y3_3-1/example_repeat_command_with_turtle
https://www.purplemash.com/app/pup/code_snippets

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

13

2. Firstly, we are looking at making objects repeat actions using a timer. Open the example program

character repeat using timer on the whiteboard. The character repeats the action of going up and down

twice. Have a look at how this is done in the code.

How could we make the character go up and down forever? It would be impossible to keep adding the

lines …..

…….inside each other forever.

3. To make the timer repeat forever, you first need to work out how often to repeat the block of code. In

the example case, every 1 seconds should be the right amount because he goes up for 0.5 seconds then

down for 0.5 seconds then we want him to repeat this again.

Open the example character repeat forever using timer. Look at the first line of code

Note that the timer says ‘every’ rather than ‘after’:

Inside this timer is the code to repeat:

4. Another example of a character repeating actions forever is in the example file timer dance forever.

Look at this with the children, can they ‘read’ the code to see how the actions are repeated?

5. Give children time to experiment with making a small program using the timer to repeat actions. They

should briefly plan their program by drawing a labelled diagram or a storyboard before coding it.

6. Once they are ready, bring the class back together to discuss the following:

7. Another command that is used to repeat blocks of code is the command. It might seem that

you could just use this instead of the timer. However, the repeat command is designed to perform an

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/examples/2c_y3_character_repeat_timer
https://www.purplemash.com/app/code/examples/2c_y3_character_repeat_forever_timer
https://www.purplemash.com/app/code/examples/2c_y3_character_dance_forever

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

14

action (run a block of code) many times as quickly as possible. This is one of the big advantages of using

a computer to do tasks; it can be programmed to perform complex calculations much faster than a

human can. Therefore, the repeat command might not always be the best choice.

8. Look at the example code ‘character repeats using repeat command’.

9. When you run it, the code will be performed so fast that you can’t actually see the actions! You can try

running the code in slow mode and you’ll see that the actions do happen.

Use the slider bar at the bottom right to alter this before you press ‘OK’ on the

message at the start:

So, in this case, the Repeat command isn’t really the best one to use.

10. If the children have done any work with Turtle objects and Logo, you might want to show them the additional

example of using the repeat command in the way that they would with a turtle object. It does work, just too

fast to use in a visual program. An example of this is in turtle repeat dance forever.

11. The ‘What does it do?’ sheet asks children to predict what code will do when run, run the code to check their

predictions and then use the code to make a better program. All code snippets use repeat; they are

reproduced here:

Sentence generator using repeat command.

This instantly generates sentences by combining random adjectives, animals and verbs.

Welcome you

To recreate this example, children will need to use the block. For the time being, do not focus on

exactly what a variable is (they will cover this in lesson 4 as it would be too much to squeeze in here). You might

want to walk them through the process of creating a variable like the example, this is detailed in Appendix 4

where the process for combining text and variables in ‘print to screen’ responses is also covered.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/examples/2c_y3_character_repeat
https://www.purplemash.com/app/code/examples/2c_y3_turle_dance_forever
https://www.purplemash.com/site#app/pup/code_snippets

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

15

Number sequence maker using user input

12. Give children time to experiment with programs using the repeat

command to repeat actions. Could they write a program that asks the user for a number and then lists the

first 50 numbers in that times table?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

16

Lesson 3 – ‘If’ Statements for selection
Aims

• To create a program that responds to the ‘if’ command or the ‘if/else’ command

• To use selection within a program.

Success criteria

• Children can create an ‘if’ statement in their program.

• Children can create an ‘if/else’ statement in their program.

• Children can use a timer and ‘if’ statement to respond to the actions of a character and change their

actions.

Resources

Unless otherwise stated, all resources can be found on the main unit 5.1 page. From here, click on the icon to set a

resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and ‘open in

new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Blank printable storyboards for designing

• Program Design Examples as a reference to possible design style examples.

Activities

1. Review the vocabulary that children have been introduced to so far, specifically, this includes:

• algorithm

• object

• property

• event

• action

• timer

• repeat

Though they will be familiar with many other terms now such as ‘block’, ‘coder’, ‘bug’ etc

Explain that so far, the children’s programs have all followed a sequence of events and some have included

repetition (using repeats and/or timers). Show the Sequence vocabulary card. Now we are going to

introduce some selection into their coding.

2. Show the selection vocabulary card. Then introduce the new vocabulary that they will be learning about

today: ‘if’ statements using the vocabulary card. Compose some ‘if statements’ as a class e.g. ‘if you listen

well then I will be happy’, ‘if there is rain then it will be wet play’ etc.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y5/computing_sow_y5_5-1
https://www.purplemash.com/app/flashcards/coding_design_exmaples

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

17

3. Open the activity ‘Guard the Castle 2’ in the Gibbon activities (main 2Code page) and do Step 1 together.

4. In Step 2, you must create a timer which checks the X position of the knight every second; if the knight’s

position is greater than 15, then he should change direction. Switch to design view and point out the x and y

positions displayed in the bottom left corner. Drag the knight around and see how they change. This is to

help the children gain an understanding of how measuring the X position can decide whether the knight

should change direction.

5. Do Step 3 together, adding another ‘if’ statement. Talk about how this should be indented at the same level

as the first ‘if’ statement so it is also inside the timer.

6. Now open free code Gorilla and drag a block into the coding window. Type a question

into the input box such as ‘Do you like computing?’

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

18

7. Drag in an as follows:

8. Run the code and answer ‘yes’ then run again and answer ‘no’; nothing happens. Discuss that this is not a

good response. How could we change it so the computer does something if the person enters ‘no’. If

children do not notice the , point it out to them. Show them the definition of if/else using the

vocabulary cards.

9. Replace the with :

10. Run the program again and on the third time enter gibberish to the question. The answer won’t be

appropriate, what could we do? Here is a possible solution; talk this through with the children.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

19

11. Children should plan a program that uses ‘if’ or ‘if/else’ blocks. They could use user input or a more visual

program like Guard the Castle. They could even make a simple chat robot using a character object who

speaks:

A note about design: encourage children to think through their designs and annotate them including their

confidence in coding what they have designed (red, amber, green), this will give you feedback on areas that

children need help with and help to ensure that children create realistic designs and successful programs for

their skill level. Use the Program Design Examples as a reference to possible design style examples.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/flashcards/coding_design_exmaples

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

20

Lesson 4 - Introducing Variables
Aims

• To understand what a variable is in programming.

• To use a variable to create a visual timer.

• To explore number and string variables.

Success criteria

• Children can explain what a variable is in programming.

• Children can explain why variables need to be named.

• Children can create a variable in a program.

• Children can set/change the variable values appropriately

Resources

Unless otherwise stated, all resources can be found on the main unit 5.1 page. From here, click on the icon to set a

resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and ‘open in

new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Y5 Lesson 3 Example

Activities

1. Today we will be working with variables. Use the vocabulary flash card to give a definition of the word

2. Explain the following:

3. In 2Code, variables can either be numbers, strings (words, phrases or even whole sentences) or functions.

4. Open Free Code Gorilla on the IWB and look at the orange variable buttons in the menu on the left-hand

side.

Variables are like boxes in which the computer can store one piece of information.

To find the information from the right box, each box should be labelled. This reserves some space in

the computer memory for this variable.

Therefore, each variable (each of our boxes) needs to have a name. The name should be something

that helps you remember what it is.

The information inside the box is called the Variable Value. The user or the program can change this

Variable Value.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y5/computing_sow_y5_5-1
https://www.purplemash.com/app/code/examples/2c_y5lesson3_example

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

21

5. Drag a block into the code window. The drop-down menu gives three options;

. For today, we are going to be looking at number and string

variables.

6. Choose ‘Number’. Give the variable the name ’counter’. Ask children why we are naming the variable?

7. We can either define the variable as a specific number or set it to Random. For this example, we will set the

variable to 0 as the counter will start from 0.

8. Drag in a timer and change ‘After’ to ‘Every’

9. Drag into the timer. We are using the timer as this is an easy way for us to get the variable

to continue changing all the time. Select your variable from the drop-down menu. Set it to Add 1 every

second.

10. Drag a block into the timer as well and select your variable.

11. Run the code and show children that it is printing every number that it changes

12. Have a look at the bottom left-hand corner of the screen as the timer counts. This is the Variable Watch

window. It tells us what variables we have in our program and what they are doing. Variable Watches are

common in programming environments to help programmers understand what the computer is doing and to

debug their code if necessary.

13. Depending upon ability, children should now try to create a program that either replicates the above or uses

a number variable to print their choice of times table to the screen. Some children might be able to work

out how the user could select the times table to print. Here are some possible solutions:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

22

14. Bring the class back together to look at string variables

15. . Display the example code snippet. But before running the code, can the children suggest what the code will

do?

16. Things to note with the children:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

23

• Use of the Random function – what does random mean?

• What does the + sign do to text? What would ‘Hello + World’ produce?

• The way 2Code can select a random animal, noun, verb or adjective in order to build sentences.

• The importance of spaces, the spaces are not correct on the example, can you debug the code as a class?

Solution is:

• Try setting a string variable to ‘1’ (the quote marks are required) and + 2 (see snippet below); can

children guess what this will make? How would you code this so it adds 1+2?

Snippet:

Solution:

17. Give children some time to explore text and number variables. What ideas can they come up with to make

funny messages?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

24

18. Here are some examples of variables in use in the guided activities, you could look at these as a class or ask

children to try the activities:

▪ the on/off state of a switch (see Switching Background Gibbon lesson)

▪ counting the number of swipes before changing a lamp into a genie (see Gibbon Genie lesson)

▪ the numbers changing in a timer (see Night and Day Gibbon lesson).

▪ Send the rocket into space (see Gorilla lessons)

▪ Catching Game (Gorilla)

▪ Driving Game (Gorilla)

▪ the counting machines in Coding Principles (on the 2Code main page in the section called Coding

Principles).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
http://www.purplemash.com/app/code/gibbon/powerswitch
http://www.purplemash.com/app/code/gibbon/genie
http://www.purplemash.com/app/code/timers/nightandday2

Purple Mash Computing Scheme of Work – Coding Crash Course –Lessons 5/6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

25

Lesson 5 and 6 Designing a game that simulates a

Physical System
Aim

• To go through the design, code, execute, refine process.

• To use the coding skills that they have encountered creatively in their own program.

• To create a program that controls or simulates a physical system, i.e. changing the speed and angle of

moving objects.

Success criteria

• Children have an idea about the design process and its benefits.

• Children have turned a design into a functioning program.

• Children can explain how their program simulates a physical system, i.e. objects move at different speeds

and angles, what they did to make their vehicle change angle, show that their vehicles move at different

speeds.

Resources

Unless otherwise stated, all resources can be found on the main unit 5.1 page. From here, click on the icon to set a

resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and ‘open in

new tab’ so you don’t lose this page.

• Flashcards as before.

• Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

• Blank printable storyboards for designing.

• 2Connect file saved in collaborative mode: The user guide for 2Connect can be found at

https://www.purplemash.com/site#app/guides/2Connect_Guide . To make a 2Connect file collaborative,

first save it in a shared folder – the image below shows saving a 2Connect file called Physical system coding

in the Ants class folder.

• Next, click in the top menu bar and the image will change to (though you might be prompted to

save it again first) this means that all children from the Ants class will have access to it (in their work area

they can navigate to the class folder) and can collaborate on the file. When you open a node (bubble with

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y5/computing_sow_y5_5-1
https://www.purplemash.com/site#app/guides/2Connect_Guide

Purple Mash Computing Scheme of Work – Coding Crash Course –Lessons 5/6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

26

text in) by clicking on the pencil symbol on the node, you can click on the button to see who has

edited the node and contributed to the work.

Activities

1. Today we will be creating a program that simulates a physical event. Who can guess what that means? Children

discuss in pairs for a minute. Explain that for our program, simulating a physical system means using angles or

speed to change the way an object moves, for example, the way someone kicks a football determines how far

and how high the ball goes.

2. Look at the stages of the Football game in Gorilla activities (do not do the activity yet). This game simulates

kicking the ball and the movement of the ball. The stages show how this is achieved in small steps, each one

adding to the physical simulation, e.g. simulating kicking the ball, simulating the effect of friction, simulating the

direction and speed of the ball, the effect of the ball hitting a wall, scoring a goal and the movement of the

goalie.

3. Work through the first three stages of the football game to demonstrate how to set the speed and angle of a

vehicle object.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/gorilla/football

Purple Mash Computing Scheme of Work – Coding Crash Course –Lessons 5/6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

27

4. On the whiteboard, open Free Code Gorilla and go to Design Mode. Drag in a vehicle, double click on it and show

children that they can change it into something else if they like by altering the image. Look at the choices of

images using the drop-down box of categories.

5. This should spark the children’s imaginations about what their program can do.

6. Open the 2Connect file and explain to children how to add/edit nodes and join nodes.

7. Show the children how to open the same file from their devices.

8. Spend a few minutes brainstorming ideas for possible programs – encourage children to enhance one another’s

ideas. If children are struggling, you could use the following starters and ask children to elaborate on what could

be coded on these themes:

• other ball games

• airport simulations

• Space or rocket simulations

• racing simulations

• snail races

• science related simulations of objects moving on different surfaces

• anything else where children will be able to experiment with changing angle, speed and friction.

9. You might want to display the coding vocabulary that they have encountered to help them plan

10. Children should then use the storyboards to plan and annotate their designs. See the following notes on design:

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Lessons 5/6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

28

11. Over the two sessions children should have time to code and refine their design. You could spend additional

time on this or ask children to continue at home. Children could also blog about their coding and/or add

finished programs to a displayboard.

A note about design: encourage children to think through their designs and annotate them including their

confidence in coding what they have designed (red, amber, green), this will give you feedback on areas that

children need help with and help to ensure that children create realistic designs and successful programs

for their skill level

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

29

Appendix I: Other features of 2Code

Real Code Mode:

On the more advanced lessons and Free Code modes it is possible to click the real code button and
see the code in a simple subset of Javascript. The code can be edited in “real code” mode and
clicking the “edit blocks” button will bring the user back to the usual graphical representation. If the
user types code into real code window that is syntactically incorrect the real code window will flash
red. Changing back to “edit blocks” will restore the code to the last state that was syntactically valid.

Sharing:

Once a 2Code program has been saved into Purple Mash, it can be shared by clicking on the globe
icon in the toolbar. This will display a window with a hyperlink and an embed code. Clicking the
hyperlink will launch the 2Code program in a web browser in fullscreen mode and the embed code
can be used to embed a 2Code program into a blog or a website. A Purple Mash login is not required

to run a shared 2Code program.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

30

Appendix 2: Actions for Gorilla objects

Object Properties in Design View Properties in Code View Actions in code view

These set the background colour and the

properties of any text that is printed to

the screen.

None None

This displays a number on the screen

which can be set to different values

and/or have calculations performed on it.

In the image above, myInput1 and

myNumber1 are objects that also have a

number value and the value of these can

be set to affect the value of the number

object.

 This displays an input box on the screen

into which a number can by typed.

In the code, input can be set to different

values and/or have calculations

performed on it.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

31

Show/Hide

The options offered will

depend upon the

property selected.

These make the object move in different

directions.

Stop, hide or show the object.

Make the object speak by displaying a

speech bubble.

The options offered will

depend upon the

property selected.

These make the object move in

different directions.

Stop, hide or show the object.

Make the object speak by displaying a

speech bubble.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

32

A turtle moves in a similar way to a floor turtle

using Logo type actions. Turn is by a number of

degrees.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

33

Appendix 3: Commands for Gibbon objects
Command Explanation

Prints some text specified by the coder to the screen.

Causes a sound to play. the sound picker will open for the coder to select a sound,

when this code block is added to the code window.

Creates a pop-up window with a message for the user and an OK button to click.

This command will put a cursor in the top left of the screen and get the input typed

onto the screen. For example if you have an alert that asks the user to type their

name, you can use this to print their name back to them:

This combines the alert and get input functions, a pop-up screen will ask the user to

enter something and they type it into a text box on the pop-up screen.

Create a timer. The coder can select whether this time should run after a certain

length of time or every x length of time. The time length is measured in seconds or

quarter seconds.

This runs the code inside if a certain condition is met. The condition could depend

upon something entered by the user or upon the value of a variable.

This runs the code inside the first block if a certain condition is met, otherwise it runs

the code inside the second block.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

34

Repeats the code inside it either forever or every x (or quarter seconds).

This command repeats the code inside until a certain condition is met. The condition

could depend upon something entered by the user or upon the value of a variable.

This will restart the program from the beginning. Useful if you want to include a

restart button in your program.

This will launch another 2Code program or open a web page. The following screen

will allow the coder to select which. You might want buttons in your program to link

to other programs that you have made or to the Internet. The launch command can

be useful when you write much bigger programs as you can split them into smaller

chunks that launch each other.

Runs the code inside it when the specified key is pressed. The code chooses which

key (including arrow keys and space bar)

Runs the code inside it when the object is clicked. The coder is given a choice of all

the available objects.

Useful for tablets. This command runs the code inside it when an object is swiped.

The coder chooses the object and the direction of the swipe. You can use the swipe

speed and swipe angle in the code. This works especially well when applied to

objects that can have both their angle and speed set, such as vehicles. Remember

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

35

that you can change the image of a vehicle to anything else such as a person if you

want to be able to do this with objects that don't look like vehicles.

Runs the code inside it when two objects collide. The coder selects the two objects.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course –Appendix 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

36

Appendix 4 – Creating variables

If children are trying to recreate the examples in lesson 2, they will come across the lines:

They will not have encountered these blocks before so might need some help to recreate them.

The process they are following is to create variables and these are covered in more detail in a future lesson.

1) In the above example they firstly need to drag in the block .

This block asks the user of the program a question - children type the question in. It then stores the result as

.

2) Then they should drag in the block

. 2Code will ask whether this should be a

 . For the example above select .

3) 2Code will name the variable myString1 because all variables must have a name. The name can be changed by
deleting it and typing in a different name.

4) Click in the final box to see the variable to .

5) In some examples the command is used to give the user information about the
variables, sometimes this is combined with text. Use the options that pop-up to help you. Any variables that
have been created will pop-up here, or you can type into the box. You can combine typing and variables by

using the sign. To get these options to reappear, click on the end of the line of code:

Click here

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

37

Assessment Guidance
The unit overview for year 5 contains details of national curricula mapped to the Purple Mash Units. The following

information is an exemplar of what a child at an expected level would be able to demonstrate when completing

this unit with additional exemplars to demonstrate how this would vary for a child with emerging or exceeding

achievements.

Assessment Guidance

Emerging Children have a basic understanding that coding involves writing instructions that a computer
can follow.

They are developing their understanding that these instructions must be precise and carefully
structured through their work in Free Code Gorilla making simple one and two step programs
for example in the lesson 1 bubble program or making an object move when clicked on in
(lesson 1). Children know that an algorithm is related to giving instructions.

With support, children can manipulate how their program looks using the 2Code design
mode, by adding and changing backgrounds, characters, sounds (lesson 1) and objects. They
can create a program that controls a character. They can make a character move when clicked
but might not be able to plan how to make a character move when a different character (or
the background) is clicked.

Children are beginning to understand that they can correct unexpected outcomes by changing
the code and they make attempts to identify the source of bugs.

With support, children can explain the possible actions of objects including movement,
clicking on them and collision. When looking at a simple program they can ‘read’ the code
one line at a time but might not be able to envision the bigger picture of the overall effect of
the program. Children will be able to suggest that an object might move when clicked but
might not be able to suggest that an object might move when the background is clicked.

Pupils can design and code a program that follows a simple sequence (lesson 1).

Pupils attempt to introduce repetition and selection into their code using timers and simple ‘if
statements’ (lessons 2 and 3). Children’s use of these structures is experimental; they cannot
always predict the outcome accurately or anticipate the structures required when planning
their code. They have a developing idea that a variable can be used to store information in a
program, in lesson 4 they can follow the examples with support but will struggle when
applying this with their own ideas.

Pupils will make good attempts to explain how programs simulate physical systems and can
create their own program to meet a design brief relating to a physical system (Lesson 5/6).

Expected Children can explain that an algorithm is a set of instructions to complete a task. They have
turned algorithms of more than one step into code using freecode Gorilla. For example, in
Lesson 1, they have been able to make a program that follows their algorithm e.g. ‘when the
bubble is clicked it hides’. Children show an awareness of the need to be precise in their
designs so that algorithms can be successfully translated into code.

In lesson 3, children used a planning format on paper before implementing on screen within
2Code. Children’s designs for their programs, show that they are thinking of the structure of a

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Coding Crash Course – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

38

Assessment Guidance

simple program in logical, achievable steps with attention to specific events that initiate
specific actions.

They can use the Design Mode within 2Code to carefully see how their planned program will
look and are able to switch into Code Mode to apply actions to objects. They confidently
include objects, actions, events and outputs successfully within their 2Code programs.

Children experiment with the use of timers to achieve repetition effects in their programs –
they can determine whether a timer should be called every x seconds or after x seconds and
the difference between the two (lesson 2). They are beginning to understand the difference in
effect of using a timer command rather than a repeat command when creating repetition
effects in their coding (lesson 2). Children can use ‘if’ statements to bring selection into their
own coding (lesson 3).

They understand how variables can be used to store information while a program is executing
(lesson 4) and make attempts to use and manipulate the value of variables.

Most children can integrate multimedia components such as sounds, animation and images
into their coding. They can apply specific actions to these objects to animate them as part of
the overall process of creating their own program.

Children can predict program outcomes and attempt to debug. Children can identify the parts
of a program that respond to specific events and initiate specific actions. Based on this,
children can predict and describe, using a cause and effect sentence, what will happen in a
program.

They make use of user input and outputs such as ‘print to screen’ (lesson 4) as well as sound
and movement of objects.

Children can explain how programs simulate physical systems and can successfully create
their own program to meet a design brief relating to a physical system (Lesson 5/6).

Exceeding Children are attempting to turn increasingly complex real-life situations into algorithms for a
program by deconstructing the situation into manageable parts. Children’s design shows that
they are thinking of the required task and how to accomplish this in code.

Children can identify an error within a program that prevents it following the desired
algorithm and then fix it (all lessons). Children make intuitive attempts to debug their own
programs as they increase in complexity.

Pupils realise the constraints of creating purely sequential programs and intuitively grasp the
concepts of selection (lesson 3) and repetition (lesson 2). Children have a good understanding
of when to use a timer in a program rather than a ‘repeat’ command to for repetition and this
is evidenced in their program designs. Children make use of variables in their programs and
combine these with timers to creative effect (lesson 4).

Pupils like to challenge themselves to combine these with other coding structures to achieve
the effects that they design to personalise and to improve their programs (lessons 4, 5 & 6).

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

