'Growing together, Learning forever'

Woodstone Community Primary School Calculation Guidance

Date: June 2022
Date for review: June 2025

The following guidance supports the White Rose Maths scheme of learning which is used for both planning and delivery of Maths across the school. Progression within each area of calculation is in line with the programmes of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children key mathematical concepts through the use of concrete, pictorial and abstract representations.

- Concrete representation - a pupil is first introduced to an idea or skill using real objects. This is a 'hands on' component and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation with concrete or pictorial representations to support, for example $12 \times 2=24$.

It is important that conceptual understanding, supported by the use of representation, is secure for all procedures. Reinforcement is achieved by going back and forth between these representations.

Mathematics Mastery

At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations.

How to use the policy:

This mathematics policy is a guide for all staff at Woodstone Primary School and has been adapted from work by the NCETM. Teachers can use any teaching resources that they wish to use and the policy does not recommend one set of resources over another, rather that, a variety of resources are used. For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The principle of the concrete-pictorial-abstract (CPA) approach [Make it, Draw it, Write it] is intended to ensure children have a true understanding of a mathematical concept; they need to master all three phases within a year group's scheme of work.

Calculation Guidance - Addition

$\begin{aligned} & \text { - } \\ & \frac{1}{\pi} \\ & \end{aligned}$		Use cubes to add two numbers together as a group or in a bar. 	Use pictures to add two numbers together as a group or in a bar.	$\begin{aligned} & 2+3=5 \\ & 3+2=5 \\ & 5=3+2 \\ & 5=2+3 \end{aligned}$ Use the part-part-whole diagram as shown above to move into the abstract.

$\begin{aligned} & \text { N } \\ & \text { 듳 } \end{aligned}$		$4+7+6=17$ Put 4 and 6 together to make 10. Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	 Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
		Add together the ones first, then add the tens. Use the Base 10 blocks first before moving onto place value counters. $24+15=$	After physically using the base 10 blocks and place value counters, children can draw the counters to help them to solve additions.	$\begin{aligned} & 24+15=39 \\ & 24 \\ & +15 \\ & \hline 39 \end{aligned}$

Calculation Guidance - Subtraction

$\begin{array}{ll} \frac{2}{\pi} \\ \stackrel{\circ}{\circ} \\ \stackrel{0}{7} \end{array}$	Objective	Concrete	Pictorial	Abstract
		Use toys and general classroom resources for children to physically manipulate, group/regroup. Use specific maths resources such as snap cubes, Numicon, bead strings etc. Use visual supports such as ten frames, part part whole and subtraction mats, with the physical objects and resources that can be manipulated.	A group of pictures for children to cross out or cover quantities to support subtraction. Use visual supports such as ten frames, part part whole and bar model with pictures/icons.	A focus on symbols and numbers to form a calculation. $10-6=4$ $7-3=?$ * No expectation for children to be able to record a number sentence/addition calculation.

		Use physical objects, counters, cubes etc. to show how objects can be taken away.	Cross out drawn objects to show what has been taken away. $4-2=2$	4-2 $=2$
	U 0 0. 00 0 0 0 0	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4=9$	Count back on a number line or number track Start at the bigger number and count back the smaller number, showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Calculation Guidance - Multiplication

$\begin{array}{ll} \stackrel{\circ}{\pi} \\ \stackrel{y}{2} \\ \stackrel{0}{7} \end{array}$	Objective	Concrete	Pictorial	Abstract
		Counting and other maths resources for children to make 2 equal groups. Physical and real life examples that encourage children to see concept of doubling as adding two equal groups.	Pictures and icons that encourage children to see concept of doubling as adding two equal groups.	Abstract representations are introduced in Year 1

		Create arrays using counters/cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. $\begin{array}{ll} & 4 \times 2=8 \\ & \\ & \\ & 4 \times 4=8 \\ & 2 \times 4=8 \end{array}$ Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

		Show the link with arrays to first introduce the expanded method.		Start with long multiplication, reminding the children about lining up their numbers clearly in columns. $\begin{aligned} & 18 \\ & \times 13 \\ & \hline 24(3 \times 8) \\ & 30(3 \times 10)) \\ & 80(10 \times 8) \\ & \frac{100}{234}(10 \times 10) \end{aligned}$
$\begin{aligned} & 0 \\ & \stackrel{0}{\omega} \\ & \frac{1}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$		Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	22 1342 $\times \quad 18$ 13420 10736 24156

Calculation Guidance - Division

		I have 8 cubes, can you share them equally between two people?	Children use pictures or shapes to share quantities.	Share 8 buns between two people. $8 \div 2=4$
	$\begin{aligned} & \text { no } \\ & \stackrel{ㅡ ㅡ ㅁ}{3} \\ & \text { 으 } \end{aligned}$	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $::: 0:$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{aligned} & 10 \div 5=? \\ & 5 \times ?=10 \end{aligned}$	$10 \div 5=2$ Divide 10 into 5 groups. How many are in each group?

