
Purple Mash Computing Scheme of Work – Y2 Crash Course – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

1

6

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

2

Year 2 Crash Course – Medium Term Plan

Differentiation

Children will need to be able to drag and drop in order to move code blocks around. If children have not had much

practice with this then there are several example activities within the Activities section of 2DIY that help children to

practise these skills in preparation: 2DIY activities to practise drag and drop. Within each category of activity, look for

the example file then press the Play button. If the children have not used Purple Mash before, spend some time

showing them how to log in and how to get to 2Code.

Note: To force links within this document to open in a new tab, right-click on the link then select ‘Open link in new

tab’.

Lesson Aims Success Criteria

1 Introduction to coding.

Introduction to block coding on

screen.

• Children can explain what is meant by coding.

• Children can explain what a block of code is.

• Children can read through combined blocks of code.

• Children know that for the computer to make something

happen, it needs to follow clear instructions.

2 Introduction to backgrounds and

characters.

Making a character move left and

right.

• Children can use Design Mode to have control over how my
game looks.

• Children can write a program that controls how a character
moves.

• Children can explain what is happening and write down/ talk

through my code.

3 Introduction to Collision

Detection.

• Children can write a program where objects can stop

moving and a sound is played when the objects collide.

4 To use Repeat and Timer

commands.

• Children can explain how to use the following terms in a
computer program: Command, Repeat, Input, Output,
Event, Collision Detection and Timer.

• Children can create a computer program including at least
four of the above new coding vocabulary terms.

5 Debugging. • Children can explain what debug (debugging) means.

• Children can explain what they did so that their computer

program did not work.

• Children can debug simple programs.

6 To explore the possible actions of

different types of objects.

• Children can create a computer program using different
objects.

• Children can predict what the objects in classmates’
programs will do, based on my knowledge of the objects’
limitations, e.g. a turtle can only move in specific ways.

• Children can explain how they know that certain objects can
only move in certain ways.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/tools/2diy

Purple Mash Computing Scheme of Work – Y2 Crash Course – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

3

When children get stuck, they will often be able to solve their own problems either by reading through their code

again or by asking their peers; this models the way that coding work is really done. More able pupils can be

encouraged to support their peers, if necessary, helping them to understand but without doing the work for them.

The crash-course aims to prepare children for using the Computing Scheme of Work Coding unit in year 3. To

enhance children’s ability to code and understand the process of coding and design, children should have had as
many of the following experiences as possible:

Challenges

When using the guided activities, children should have attempted the challenges at the end of the guided lessons in

2Code and come up with solutions to these either individually or using shared coding as a group or class.

Free coding

Children will benefit from spending some time using:

• Y1-2 Free code Chimp (or Free code scenes)

• Y3-4 Free code Gibbon

• Y5-6 Free code Gorilla

To create their own programs.

Program Design

To master coding skills, children need to have the opportunity to explore program design and put computational
thinking into practice. The crash course suggests some designing before coding in the plans. Children could do this

through:

• Storyboarding their ideas for programs. For example, creating a storyboard when planning a program that

will retell part of a story.

• Creating annotated diagrams. For example, creating an annotated diagram to plan a journey animation that

tells the story of an historical event they have been studying.

• Creating a timeline of events in the program. For example, creating a game program against the computer,

what are all the actions needed from the objects?

During the design process, children should be encouraged to clarify:

• the characters (objects and their properties)

• what they will do (actions and events)

• what order things will happen (the algorithm)

• rate their confidence at being able to code the different parts of their design and either refine the design or
review possible solutions as a class or group.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Medium Term Plan

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

4

Levels of Scaffolded coding tasks

You can support children’s learning and understanding by using different degrees of scaffolding when teaching

children to code. The lessons provide many of these levels of scaffolding within them and using Free Code Chimp,

Gibbon and Gorilla enables children to clarify their thinking and practice their skills. These are not progressive levels,
children can benefit from all the levels of activities at whatever coding skill level they are:

Scaffolding Task type Covered by guided activities in
2Code

How to provide additional
opportunities

 Copying code ✓

Targeted tasks Read and understand code ✓

Remix code to achieve a
particular outcome ✓

Debugging ✓

• Use printed code snippets so that

children can’t run the code but must
read it.

• Include unplugged activities and

‘explaining’ tasks e.g. ‘how do

variables work?’

Shared coding Sharing Challenge activities → • Complete guided activity challenges

as a class.

• After completing challenges; share

methods to create a class version of

the challenge.

• Free coding as a class

Guided

exploration

Exploring a limited repertoire of

commands ✓

Remixing code ✓

• Explore commands In free code

before being taught what they do.

Use questioning to support

children’s learning.

Project design

and code

Guided activities ✓

Guided challenges at the end of

each guided activity ✓

Free code✓

Projects (imitate, innovate, invent,

remix)

There are different ways to scaffold

learning in projects. This process can
be applied to programming projects;

• Using example projects.

• Create a project that imitates a high-

quality exemplar.

• Remixing ideas.

• Independently creating a brand-new
program.

Tinkering Use Free code Gorilla to access

the full suite of 2Code objects
and commands ✓

Use Free code to play and explore

freely.

In Literacy, some teachers

follow a progression that

scaffolds learning to write

texts. At first pupils read

lots of examples of the

genre of text they are going

to create. Then they create

an imitation of an example

text. Next, they create a

variation of the text (remix

and innovate). Finally, they

get to inventing a brand-

new version.

Most

scaffolded

Least

scaffolded

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

5

Lesson 1 - Introduction to coding
Aims

• To understand what coding means in computing.

• To create unambiguous instructions like those required by a computer.

• To introduce 2Code.

• To use the 2Code program to create a simple program.

Success criteria

• Children can explain what coding means.

• Children know that for the computer to make something happen, it needs to follow clear instructions.

• Children can explain what a block of code is.

• Children can read through combined blocks of code.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Code block cards. Children will need to use a few copies of each picture to create code away from the

computer.

• Children will be looking at activities from the Chimp guided lessons. These can be found on the main

2Code page.

• (Optional) Exercise books to be used as 2Code workbooks for recording coding exercises, if desired.

Activities

1. Explain to the children that we are looking at coding. Ask them if they know what coding is. Discuss briefly

that it is the way that computer programmers input instructions into computers to create programs. Can

they give any examples of computer programs that they have used?

2. Start off by doing some activities where the children must follow or give clear instructions.

3. Choose two children; one is a robot and the other is a coder. The coder needs to direct the robot to walk

from one place in the classroom to another. How can they give the instructions so that the robot does not

crash into objects in the way? Repeat a few times in different locations.

4. Tell the children that you are now going to be the robot and they are the coders. Stand by the whiteboard

and ask the children to give you clear instructions, one step at a time, for drawing a basic picture of a

house.

5. Once you have a set of clear instructions, discuss the way that coding languages use symbols rather than

whole sentences. Can they come up with their own symbols for the instructions for drawing a house? For

example, holding their fingers in a triangle shape for the roof. These symbols could be written on the

whiteboard to create a program. This can become more complex, depending upon the understanding and

interest level of the children. Some children will enjoy working out how their ‘code’ could be adapted to

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons
https://www.purplemash.com/site#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

6

draw a bungalow or a block of flats. Some children will want to be precise about the placement of the

shapes, e.g. a symbol to show putting the roof on top of the house.

6. Show the children the printed code block cards. Explain that these are examples of code used on a

computer. Can they suggest ways to combine the cards to make instructions?

7. Show children the ‘Fun with Fish’ lesson in the 2Code Chimp lesson area. Briefly show the Design View

(button in top right-hand corner) to show what the code will be controlling. Work through challenges 1, 2

and 3 with the children watching the videos and reading through the blocks of code. Emphasise the need

to give the computer clear instructions for moving the fish. Point out that each action is on a different

line.

8. Direct the children to the Bubbles activity and ask them to complete the steps on their own computers.

Show them the ‘hint’ button to use in case they are really stuck. To use a hint, click on the at the top

right of the screen to open the instructions then click on the .Children should finish step 3.

Step 1 Step 2 Step 3 Step 4

Debugging challenge Make your own

bubbles

9. Bring the class back together and complete step 4 as a class coding activity. Children can suggest actions

for the bubbles and work out how to write the code for them. During this class coding, make the point

that when some blocks of code have indented lines of code within them for example:

The ‘red bubble hide’ is slightly indented. This is

because it is the ‘output’ (what we want to happen).

Show what would happen if you put the codes directly

under each other: the red bubble would hide

regardless of whether it was clicked if the ‘red bubble –

hide’ line is not inside the click event.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

7

Lesson 2 - Introduction to Backgrounds and

Characters
Aim

• Children will use Design Mode to add and change backgrounds and characters. They will use the

Properties table to change the look of the objects.

Success criteria

• Children can make a background using Design Mode.

• Children can add characters using Design Mode.

• Children can use the drop-down menu to change backgrounds and characters.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Challenge cards. You will need to print copies of the images from these to distribute to the class.

• Code block cards. These can be displayed somewhere to aid children in their planning.

• Free Code Chimp; this can be found on the main 2Code page.

Activities

1. Show the children Free Code Chimp. This is different to the Chimp lessons because we have the freedom

to create our own games and we can pick how we want our games to look.

2. Discuss any computer games that the children have played. On the interactive whiteboard (IWB), show

images of some popular age-appropriate computer games.

3. Explain that the children are going to be programmers and that their job is to create their own simple

program. We need to think about how our games will look. Refer again to the pictures of popular games.

Just like pages in a book, a game needs to have a background. What else do games need? Discuss the use

of characters in games and the purpose of some games (e.g. to collect things, save other characters, get

onto another level or into another world).

4. Remind the children about Design View and the Code Mode in 2Code that they saw last week. On Free

Code the design is blank because we must choose the background and characters.

5. Explain that if we want to add a background we need to go into design view and then press the

Background button.

6. Show children how to choose different backgrounds (by double-clicking on the question mark in the

properties here . Show how the Get Image and Paint Image buttons work.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/flashcards/2c_y1_lp2_fc_challenge_cards
https://www.purplemash.com/app/flashcards/2c_y2_code_block_cards
https://www.purplemash.com/#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 2

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

8

7. Show children how to add a character to their background by dragging it across. Show children how to

change the character image by double clicking on the character and using the drop-down menu.

8. Distribute the challenge cards and explain that these are ideas for a program. They should use the printed

images to design their program by annotating them with what each character will do e.g. ‘when clicked,

move up’. You might want to display the code block cards for pupils to refer to.

9. Once children have a design for their program and feel confident that they can code what they have

designed, they should go to their devices and open up Free Code Chimp and try to recreate their design.

10. Children can save their screen by pressing the Save button (the blue floppy disk) at the top of the screen

and saving into My Work. If they have not used Purple Mash to save before then they will need time to

practise this.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

9

Lesson 3 - Introduction to Collision Detection
Aim

• To use Collision Detection to make objects stop moving when they collide and play a sound when this

happens.

Success criteria

• Children can make objects stop when they collide.

• Children can program a sound to play when objects collide.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• 2Code Collision Detection video. NB This is an extract of another video, so it appears to start abruptly.

• Free Code Chimp; this can be found on the main 2Code page.

Activities

1. Show two real-life objects (either real people moving towards each other or objects in your hand). Are the

objects moving in the same direction? What will happen when the objects meet? Explain the meaning of

the word ‘collide’. Explain that we are doing the same in our game; when two objects collide, we want

them to stop and we want to hear a sound on impact.

2. Open the Free Code Chimp area and ask a child to add a background and two characters using Design

Mode.

3. Switch to Code Mode and ask the children to look at the various coding options on the left-hand side of

the screen. Which one could we use to make something happen when the objects collide?

4. Watch and discuss the Collision Detection video. Recreate a collision between two objects as a class. Why

can’t we put the Collision Detection command in first? Explain how we must build the code first; make

some code so that the characters are moving towards each other then can we add the Collision Detection.

5. Explore some of the possible things that could happen when two objects collide:

- One or other or both stop

- One or other or both hide (e.g. a spaceman moving towards a rocket: upon collision, the spaceman

hides, making it look as if he went into the rocket).

- One or other or both move differently (change direction)

- Background image could change (drag the code block into the collision detection block)

- A sound could play (drag the code block into the collision detection block)

- A message could print to the screen or an alert box could appear (drag the or

code blocks into the collision detection block)

- Some children could make a combination of actions happen upon collision e.g. a sound and an action.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/videos/2diy/2Code_collision_detection_video
https://www.purplemash.com/#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 3

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

10

6. Children should decide upon something that they would like their objects to do. This could be in the form

of a written design or by discussing their plans. They should then work on their devices to build up the

code and add a Collision Detection command following their design.

7. For more practice of this concept see Chimp lessons ‘Guard the Castle’ and ‘Princess and the Frog’ which

also use Collision Detection.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

11

Lesson 4 – Using Repeat and Timer Commands
Aims

• To understand the meaning of repeat in 2Code.

• To understand how a timer works in 2Code.

Success criteria

• Children can create a computer program including a repeat and a timer.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Repeat and Timer example code.

• A Beebot or other floor robot if available.

• Blank printable storyboards for designing.

Activities

1. Ask children what they think ‘repeat’ means. You could relate this term to the use of Bee bots or other

floor robots if the children have experience of these. How can you make a Beebot move in a square

shape? Write the instructions without using repeat then refine the instructions to use repeat.

2. Look at the Repeat and Timer example. Can the children see the repeat command used to make the turtle

move?

3. Play the code. The turtle moves very quickly. You can slow it down (though it will stop the timer part of

the program working properly). To see this, click on the in the top menu bar before pressing play.

Then in play mode look for the speed slider on the bottom right and set it to slow, then press the play

button above the slider.

First, the turtle repeats the action of turning 45 degrees, twice.

There is actually a shorter way that this can be coded without using

‘repeat’; can the children work out what it is? (turn 90°)

Then, it repeats the action of going forwards two steps, three times.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
http://www.purplemash.com/app/code/examples/2c_y2lp2
http://www.purplemash.com/app/code/examples/2c_y2lp2

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

12

4. Give children some time to try to make their own turtle move in a square pattern then bring the class

back together again.

5. Look at the code for the princess in the example, this uses timers to make the princess move in a certain

way.

6. In the last part of the program, when the turtle and princess collide, there is a ‘splat!’ sound and the turtle

hides (he has been squashed).

7. Open free code Chimp on the board and recreate the following program using the timer. You could ask

children to drag the blocks to demonstrate to the class.

Add two heroes and make their images different from each

other

Make both heroes go up initially. Press play to show the

children.

Add a timer making both heroes change direction after 2 seconds. Point out

to the children that the timer command can be set to ‘every’, they need to

check it is set correctly otherwise their code won’t work as they expect it to.

Play the code so children can see it working.

Add collision detection so that a bang sound plays when the heroes

collide and one of the hero images is set to ‘OUCH’ (you can find this

is the splats section of the clipart picker).

Play the code so children can see it working.

Add another timer that then sets the hero image back after 2

seconds.

Play the code so children can see it working.

The princess moves up

After 0.5 seconds, she moves down

After another 0.5 seconds, she stops.

(This is supposed to look like the princess jumping on the turtle).

Then, it repeats the action of going forwards two steps, three times.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 4

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

13

Add a final timer that makes the other hero say ‘Woo

Hoo!’ every 5 seconds.

8. In the Chimp guided activities, the use of the timer is introduced in a video in Step 5 of ‘Princess and the

Frog’, and the ‘Tick Tock Clock’ and ‘Magician’ activities also use a timer. You can look at these with the

children if they need more guidance or ideas or children could work on these activities.

9. Children should have the chance to design a simple program using repeat or timers and create their

design as a program. Here are examples of designs that you could use to explain how to design:

A note about design: encourage children to think through their designs and annotate them including their

confidence in coding what they have designed (red, amber, green), this will give you feedback on areas

that children need help with and help to ensure that children create realistic designs and successful

programs for their skill level.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

14

Lesson 5 – Debugging
Aims

• To know what debugging means in computing.

• To intentionally break a program and then debug it.

• To debug other simple programs.

Success criteria

• Children can explain what debug (debugging) means.

• Children can explain what they did so that their computer program did not work.

• Children can debug simple programs.

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Vocabulary flash cards.

• Debug Challenges Chimp these can be found on the main 2Code page. Set them as a 2do for your class.

Activities

1. Today we are learning another new piece of vocabulary: debugging. Ask children if they know what

debugging or to debug means? Explain that debugging means to fix code. Often, programmers make a

mistake when they are coding, or they find that a program doesn’t work, so they have to find and fix the

mistakes to make the program work. The problems are called bugs and solving them is called debugging.

2. Before you start to debug a program, you need to think through some steps. Put the following on the

board (there is a PDF of this table in the Downloads folder). Children could write/stick the steps into their

2Code workbooks.

What is the
program

supposed to
do?

 What is the

problem?
 What do I need

to change in

the code to fix

it?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/code/debugchallenges/2codedebugchimp
https://www.purplemash.com/#tab/pm-home/tools/2code_lessons

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 5

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

15

3. Children should open Debug Challenges Chimp on their device and complete the challenges. They should

save each challenge once they have completed it.

4. Once children have completed the Debug Challenges, bring them back together and open Free Code

Chimp on the board. Explain that they will be using the program they created in the last lesson and that

they will be ‘breaking’ it for their partner to debug.

5. Children should open one of their previously made programs and make a written record of what their

program is supposed to do.

6. They should then break their code by changing a line of code. They should then write down what the

problems are with the broken program.

7. They should then write an instruction for their partner, similar to the ones seen in the Debug Challenges,

to help them debug their program.

8. Children should save their program in a class folder using their name in the title. Children open their

partners’ programs and try to debug the code using the steps they have in their workbooks/on the board.

9. Once the children have finished, they should check that the programs work according to the explanation

that the initial children specified in their workbooks. If a program does not work according to the

explanation, the code should be fixed until it works.

Does it work

now?
If it doesn’t do what it is supposed to do, what

have I done wrong and how can I fix it?

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/debugchallenges/2codedebugchimp

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

16

Lesson 6 – Exploring the Possible Actions of

Objects
Aims

• To create programs using different kinds of objects whose behaviours are limited to specific actions.

• To predict what the objects will do in other programs, based on their knowledge of what the object is
capable of.

• To discuss how logic helped them understand that they could only predict specific actions, as that is
what the objects were limited to.

Success criteria

• Children can create a computer program using different objects.

• Children can predict what the objects in classmates’ programs will do, based on my knowledge of the
objects’ limitations, e.g. a turtle can only move in specific ways.

• Children can explain how they know that certain objects can only move in certain ways

Resources

Unless otherwise stated, all resources can be found on the main unit 2.1 page. From here, click on the icon to

set a resource as a 2do for your class. Use the links below to preview the resources; right-click on the link and

‘open in new tab’ so you don’t lose this page.

• Logical Reasoning Example.

Activities

1. Today we will be creating our own programs using different kinds of objects. When used in programming,

review what ‘objects’ are. The image below shows all the possible objects in Chimp, children will not have

used all of these.

2. Remind children where objects can be found in Design Mode in Free Code Chimp.

3. Explain that in a computer program, objects can only do what we, the coders, tell them to do. Some

objects can only do certain things.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/#tab/Teachers/computing_sow/computing_sow_y2/computing_sow_y2_unit_2-1
https://www.purplemash.com/app/code/examples/2c_y2lp4

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

17

4. In this lesson we will only be using turtles and characters. In chimp freecode switch to design view and

drag in a character, a turtle and a button. In code view, go through the different possible actions of the

objects.

5. Ask children to create a program in Free Code Chimp using one turtle and the When Clicked command.

They should get the turtle to do three or four different things in sequence when clicked. For example:

6. All children should save their programs and come back together. Open one of the children’s programs on

the board in Design View and ask the children to predict what the turtle will do when they click on it. The

turtle is limited to going forwards, backwards, turning left or turning right, so any of those answers is

potentially correct. Go through two to four programs, getting the children to guess what the turtles might

do, based on their logical knowledge of the turtles’ limitations.

7. Explain to children that now they will be adding characters to their programs. They should add a character

and then use the command to attribute five actions to their character. Show on the IWB that

characters can do more than turtles, so the children have more scope in terms of what to do with them.

Logical Reasoning Example.

8. Send children to devices to work on their programs. They should code a character to do something when

the arrow keys and the spacebar are pressed. If children are using touchscreens, you will need to choose

different keys or, alternatively use the command and explain how to use this to the

children.

Characters

Food, animals, princesses, heroes and

emoticons can go up, down, left, right,

hide and show.

Turtles

Can go forwards, backwards, turn

clockwise and anticlockwise.

Buttons

Can be clicked.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware
https://www.purplemash.com/app/code/examples/2c_y2lp4

Purple Mash Computing Scheme of Work – Y2 Crash Course – Lesson 6

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

18

9. Once children are done, they should save their programs and come back together at the whiteboard.

Bring up a child’s program on the board in Design View and ask them to predict what the character will do

when it is clicked. Characters can go up, down, left, right or stop, so any of those answers are potentially

correct. Repeat with two to four more programs, asking children to predict both turtles’ and characters’

actions, using their knowledge of the character limitations of movement to guide them.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Appendix 1

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

19

Appendix I: Other features of 2Code

Real Code Mode:

On the more advanced lessons and Free Code modes it is possible to click the real code button and
see the code in a simple subset of Javascript. The code can be edited in “real code” mode and
clicking the “edit blocks” button will bring the user back to the usual graphical representation. If the
user types code into real code window that is syntactically incorrect the real code window will flash
red. Changing back to “edit blocks” will restore the code to the last state that was syntactically valid.

Sharing:

Once a 2Code program has been saved into Purple Mash, it can be shared by clicking on the globe
icon in the toolbar. This will display a window with a hyperlink and an embed code. Clicking the
hyperlink will launch the 2Code program in a web browser in fullscreen mode and the embed code
can be used to embed a 2Code program into a blog or a website. A Purple Mash login is not required
to run a shared 2Code program.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

20

Assessment Guidance
The unit overview for year 2 contains details of national curricula mapped to the Purple Mash Units. The

following information is an exemplar of what a child at an expected level would be able to demonstrate when

completing this unit with additional exemplars to demonstrate how this would vary for a child with emerging

or exceeding achievements.

Assessment Guidance

Emerging Children have a basic understanding that coding involves writing instructions that a computer
can follow.

They are developing their understanding that these instructions must be precise and carefully
structured through their work in Free Code Chimp making simple one and two step programs
for example in the lesson 1 bubble program or making an object move when clicked on in
(lesson 1).

Children know that an algorithm is related to giving instructions. They can relate a simple one
step algorithm to the outcome of code in Free code Chimp (lesson 1) ‘when the bubble is
clicked it moves up’.

With support, children can manipulate how their program looks using the 2Code design
mode, by adding and changing backgrounds, characters (lesson 2), sounds (lesson 3) and
objects. They can create a program that controls a character. They can make a character
move when clicked but might not be able to plan how to make a character move when a
different character (or the background) is clicked.

Children are beginning to understand that they can correct unexpected outcomes by changing
the code and they make attempts to identify the source of bugs.

With support, children can explain the possible actions of objects including movement,
clicking on them and collision. When looking at a simple program they can ‘read’ the code
one line at a time but might not be able to envision the bigger picture of the overall effect of
the program. Children will be able to suggest that an object might move when clicked but
might not be able to suggest that an object might move when the background is clicked.

Expected Children can explain that an algorithm is a set of instructions to complete a task. They have
turned algorithms of more than one step into code using freecode Chimp. For example, in
Lesson 1, step 16 they have been able to make a program that follows their algorithm e.g.
‘when the bubble is clicked it hides’. Children show an awareness of the need to be precise in
their designs so that algorithms can be successfully translated into code.

In lesson 4, children used a planning format on paper before implementing on screen within
2Code as they recognise this is the best approach for designing a solution efficiently.

They can use the Design Mode within 2Code to carefully see how their planned program will
look and are able to switch into Code Mode to apply actions to objects. They confidently
include objects, actions, events and outputs successfully within their 2Code programs.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

Purple Mash Computing Scheme of Work – Y2 Crash Course – Assessment Guidance

Need more support? Contact us
Tel: 0208 203 1781 | Email: sow@2simple.com | Twitter: @2simplesoftware

21

Assessment Guidance

Children can talk through code which contains repeat and timer commands, explaining where
they are positioned and what will happen (lesson 4).

Children can predict program outcomes and attempt to debug (lesson 5). Children can identify
the parts of a program that respond to specific events and initiate specific actions. Based on
this, children can predict and describe, using a cause and effect sentence, what will happen in
a program.

Children can debug their own and other’s programs using design documentation to test
against (Lesson 3).

Most children will be able to save their files using a memorable file name e.g. their name and
a simple title etc.

Exceeding Children can explain and give examples that an algorithm is a set of instructions to complete a
specific task.

They can create complex and logical algorithms of several steps that accomplish the aim of
the task that can be easily utilized to create executable code.

Children show an awareness of the need to be precise in their designs so that algorithms can
be successfully translated into code.

Children can create more complex programs that utilize all the coding constructs that they
have learnt about and extend their own learning by trying out different ways to code that
achieve a specific purpose.

Children can identify and correct errors. An exceeding pupil will be able to apply their
knowledge as a transferable skill across a range of debugging scenarios including making
logical attempts to debug their own more complex code.

Children can identify the parts of a program that respond to specific events and initiate
specific actions. Based on this, children can adopt a systematic approach for predicting the
behaviour of programs. Furthermore, using cause and affect language, children can reason in
detail about what will happen in a program. For example, Lesson 6.

mailto:sow@2simple.com?subject=Unit%203.1
http://twitter.com/2simplesoftware

